

Advanced Nuclear Reactor Digital Twin

Senior Design II – Spring 2022

Team Members: Alex French (afrench8@uncc.edu), Abrar Altaay (aaltaay1@uncc.edu) Skylar Bass (sbass20@uncc.edu), Ariel Futa (afuta@uncc.edu), Evan Mitrovic (emitrovi@uncc.edu), Nick Dunner (ndunner@uncc.edu) Dr.Sven Bader, Brad Crotts, Michael Murray

Faculty Mentor:

Dr. Mohamed-Ali Hasan

Objective

Industry Supporters:

- Models total energy load to satisfy demand then determine the most efficient allocation of surplus energy.
- Models the reactor's total energy contribution to the grid
- Allocates Egressive and Regressive energy to maximize profits within the restraints of the outlets energy capacity.

Performance Specifications

Model the replacement of the Mayo **Steam station with 6 XE-100 SMRs**

- Reactors run at full power with all excess energy committed to hydrogen production
- The energy storage capacity is maximized to ease the load following behavior of the energy distribution configuration
- Revenues for each energy type, fixed costs and variable costs are used to perform real time financial analysis of the plant

System Overview

MATLAB Application Features

- Ingests historical data from the Energy Information Analysis database
- Outputs the total energy apportioned to Hydrogen Generation, Grid demand and Battery Storage
- Graph energy grid demand and total generation in MWh by yearly seasons (Winter, Spring, Summer, and Fall)
- Ability to graph & select from multiple energy sources to graph on a Megawatt Hours vs Date graph for any day of the year.
- View Total MWh generation and grid load by day and analyze where energy is being distributed.
- Formulated key features such as "Egressive" and "Regressive" energy types and view values by day in real time.
- Ability to analyze the day by day and year to date profit generated from Egressive and Regressive energy types.

Egressive Energy

- Hydrogen production via electrolysis
- Nel Hydrogen M-5000 Electrolyser
 - Average power consumption
 - 50 kWh/kg
 - Daily Hydrogen Production
 - 10,618 kg

Regressive Energy

- Battery Energy Storage System
- Honeywell Flow Battery
 - 31 MW Capacity
 - Capability to store energy for up to 12 hours

orano

Advanced Nuclear Reactor Digital Twin

Senior Design II – Spring 2022

CHARLOTTE

THE WILLIAM STATES LEE

COLLEGE OF ENGINEERING

Industry Supporters:
Dr. Sven Bader, Brad Crotts, Michael Murray

Team Members: Alex French (afrench8@uncc.edu), Abrar Altaay (aaltaay1@uncc.edu)
Skylar Bass (sbass20@uncc.edu), Ariel Futa (afuta@uncc.edu),

Evan Mitrovic (emitrovi@uncc.edu), Nick Dunner (ndunner@uncc.edu)

Faculty Mentor:
Dr. Mohamed-Ali Hasan

Objective

- Models total energy load to satisfy demand then determine the most efficient allocation of surplus energy.
- Models the reactor's total energy contribution to the grid.
- •Allocates Egressive and Regressive energy to maximize profits within the restraints of the outlet's energy capacity.
- Take into consideration the maximum capacity of hydrogen storage to determine the most profitable allocation of excess energy.

Performance Specifications

Model the replacement of the Mayo Steam station with 6 XE-100 SMRs

- Reactors run at full power with all excess energy committed to hydrogen production
- •The energy storage capacity is maximized to ease the load following behavior of the energy distribution configuration
- •Revenues for each energy type, fixed costs and variable costs are used to perform real time financial analysis of the plant

Advanced Nuclear Reactor Digital Twin

Senior Design II – Spring 2022

Team Members: Alex French (afrench8@uncc.edu), Abrar Altaay (aaltaay1@uncc.edu) Skylar Bass (sbass20@uncc.edu), Ariel Futa (afuta@uncc.edu), Evan Mitrovic (emitrovi@uncc.edu), Nick Dunner (ndunner@uncc.edu) Dr.Sven Bader, Brad Crotts, Michael Murray

Faculty Mentor:

Dr. Mohamed-Ali Hasan

System Overview

Respective Energy Production Methods The Model Digests

Industry Supporters:

- Nuclear
- Solar
- Coal
- Pumped Storage
- Hydropower
- Gas

Objective of Algorithm

- Decrease energy produced by coal by replacing it with state-of-the-art Advanced Nuclear Reactors
- Produce hydrogen using excess energy to increase profitability of the

overall system

Egressive Energy

- Type of alternative energy produced from the excess energy for the purpose of an application outside of the grid
- Hydrogen production via electrolysis for fuel

Regressive Energy

- Type of alternative energy produced from excess energy for the purpose of an application toward the grid
- Battery storage

Matlab Application

The Digital Model via MatLab

- Ingests historical data from the Energy Information Analysis database
- Outputs the total energy apportioned to Hydrogen Generation, Grid demand and Battery Storage

The Goal of the Model

- Calculate the excess energy
- Calculate the profit of energy production to include the generation of Hydrogen
- Ensure the most profitable allocation method without affecting the grid
- Display the amount of generation capacity going to each system outlet

Advanced Nuclear Reactor Digital Twin

Senior Design II – Spring 2022

COLLEGE OF ENGINEERING

Team Members: Alex French (afrench8@uncc.edu), Abrar Altaay (aaltaay1@uncc.edu) Skylar Bass (sbass20@uncc.edu), Ariel Futa (afuta@uncc.edu), Evan Mitrovic (emitrovi@uncc.edu), Nick Dunner (ndunner@uncc.edu) Dr.Sven Bader, Brad Crotts, Michael Murray

Faculty Mentor: Dr. Mohamed-Ali Hasan

Project Status

- Developed MATLAB model to demonstrate energy generation and apportioning of energy at any given time
- Graphing historical data to aid end users to understand power consumption trends
- User is able to select specific dates to display only necessary data
- Model capabilities include graphing:

Industry Supporters:

- The 6 generation sources that make up grid power
- Reactor usage for each avenue it supplies
- Egressive Vs. Regressive for each day selected
- Custom input data

Duke Energy Mayo Steam Station

Future Work

- To allow the user more interactivity with the data, such as manipulating Egressive and Regressive numbers using a number slider. This will allow for rapid analysis of the total profitability of the system.
- Implement a feature where a user is able to upload a multi-year data set using the "Import File" button instead of having to change directories in the code.
- Packaging the application using MATLAB Packaging to allow the use of a single executable file instead of a compressed file.
- Implement other Egressive and Regressive generation methods other than hydrogen production and battery storage.
- Improve overall GUI design to a more modern look.

Industry Supporters:

Advanced Nuclear Reactor Digital Twin

Senior Design II – Spring 2022

Team Members: Alex French (afrench8@uncc.edu), Abrar Altaay (aaltaay1@uncc.edu) Skylar Bass (sbass20@uncc.edu), Ariel Futa (afuta@uncc.edu), Evan Mitrovic (emitrovi@uncc.edu), Nick Dunner (ndunner@uncc.edu) Dr.Sven Bader, Brad Crotts, Michael Murray

References

- 1. "Mayo plant power plants," Duke Energy. [Online]. Available: https://www.duke-energy.com/our-company/aboutus/power-plants/mayo-plant. [Accessed: 02-Dec-2021].
- 2.Bade, Dyna Mariel. "US Department of Energy Announces Green Hydrogen Cost-Cutting GoalD." Institute for Energy Economics & Financial Analysis, June 8, 2021. https://ieefa.org/us-department-of-energy-announces-green-hydrogencost-cutting-goal/.
- 3. "PEM Electrolyser." Nel Hydrogen, 19 Nov. 2021, https://nelhydrogen.com/product/m-series-5/.
- 4. "Real-Time Operating Grid U.S. Energy Information Administration (EIA)." Real-Time Operating Grid U.S. Energy Information Administration (EIA), https://www.eia.gov/electricity/gridmonitor/dashboard/electric_overview/US48/US48.
- 5. Clarion Energy Content Directors 10.27.2021, et al. "Honeywell to Test New Long-Duration Flow Battery with Duke." Power Engineering, 27 Oct. 2021, https://www.power-eng.com/energy-storage/honeywell-to-test-new-long-durationflow-battery-with-duke-2/#gref.
- 6.Battery Energy Storage Systems, https://process.honeywell.com/us/en/industries/renewable-and-energy-storagesolutions/bess.